We develop a new upper bound on the capacity of the relay channel that is tighter than all previous bounds. This upper bound is proved using traditional weak converse techniques involving mutual information inequalities and identification of auxiliary random variables via past and future channel random variable sequences. We show that it is strictly tighter than all previous bounds for the Gaussian relay channel with non-zero channel gains. When specialized to the relay channel with orthogonal receiver components, the bound resolves a conjecture by Kim on a class of deterministic relay channels. When further specialized to the class of product-form relay channels with orthogonal receiver components, the bound resolves a generalized version of Cover's relay channel problem, recovers the recent upper bound for the Gaussian case by Wu et al., and improves upon the recent bounds for the binary symmetric case by Wu et al. and Barnes et al., which are all obtained using non-traditional geometric proof techniques. We then develop an upper bound on the capacity of the relay channel with orthogonal receiver components which utilizes an auxiliary receiver and show that it is tighter than the bound by Tandon and Ulukus on the capacity of the relay channel with i.i.d. relay output sequence. Finally, we show through the Gaussian relay channel with i.i.d. relay output sequence that the bound with the auxiliary receiver can be strictly tighter than our main bound.


翻译:我们在中继频道的能力上开发了一个新的上限,它比以往所有范围都更加紧。这个上限被证明使用了传统的薄弱反向技术,涉及相互信息不平等和通过过去和未来的频道随机变数序列识别辅助随机变量。我们显示,它比高山中继频道的以往所有范围严格,并带来非零频道增益。当对中继频道专门使用正方接收器组件时,约束会解决金在确定性中继频道等级上的猜测。当进一步专门针对带有正方接收器组件的产品-形式中继频道类别时,约束会解决覆盖中继频道问题的普遍版本,由吴等人(Wu et al.) 和巴恩等人(Barnes et al.) 使用非传统的几何度校准验证技术,从而解决了中继频道中继器的假设。我们随后在中继接收器上开发了上层接收器部件的容量,从而显示,由Ulddoon 显示, 其中继器的中继器比中继器更紧。

0
下载
关闭预览

相关内容

还在修改博士论文?这份《博士论文写作技巧》为你指南
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
Diganta Misra等人提出新激活函数Mish,在一些任务上超越RuLU
专知会员服务
14+阅读 · 2019年10月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年8月11日
Arxiv
0+阅读 · 2021年8月9日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
VIP会员
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员