Both buyers and sellers face uncertainty in real estate transactions in about when to time a transaction and at what cost. Both buyers and sellers make decisions without knowing the present and future state of the large and dynamic real estate market. Current approaches rely on analysis of historic transactions to price a property. However, as we show in this paper, the transaction data alone cannot be used to forecast demand. We develop a housing demand index based on microscopic home showings events data that can provide decision-making support for buyers and sellers on a very granular time and spatial scale. We use statistical modeling to develop a housing market demand forecast up to twenty weeks using high-volume, high-velocity data on home showings, listing events, and historic sales data. We demonstrate our analysis using data from seven million individual records sourced from a unique, proprietary dataset that has not previously been explored in application to the real estate market. We then employ a series of predictive models to estimate current and forecast future housing demand. A housing demand index provides insight into the level of demand for a home on the market and to what extent current demand represents future expectation. As a result, these indices provide decision-making support into important questions about when to sell or buy, or the elasticity present in the housing demand market, which impact price negotiations, price-taking and price-setting expectations. This forecast is especially valuable because it helps buyers and sellers to know on a granular and timely basis if they should engage in a home transaction or adjust their home price both in current and future states based on our forecasted housing demand index.


翻译:买主和卖主都面临房地产交易的不确定性,大约在何时和以何种成本进行交易。 买主和卖主在不知道大规模和动态房地产市场当前和未来状况的情况下作出决定。 目前的方法依赖于对历史交易的分析,以物产定价。 但是,正如我们在本文中显示的那样,仅凭交易数据不能用于预测需求。 我们根据微观家庭显示事件的数据,制定住房需求指数,以非常颗粒的时间和空间尺度为买主提供决策支持。 我们使用统计模型,利用大量、高速的房价展示数据、列出事件和历史销售数据,来制定最高达20周的住房市场需求预测。 我们用700万个个人记录的数据来进行分析,这些数据来源于以前没有在房地产市场应用过探讨过的独特、专有的数据集。 我们然后使用一系列预测模型来估计当前和预测未来住房需求。 住房需求指数应深入了解市场对住房需求的需求水平,以及当前需求代表未来预期的程度。 特别是,这些指数为当前房价估值提供了决定或市场价格预测提供重要支持,因为当前房价预测是房价预测,因此,房价预测有助于购买房价基础。

0
下载
关闭预览

相关内容

专知会员服务
84+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
13+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Estimation of the Shapley value by ergodic sampling
Arxiv
0+阅读 · 2022年4月19日
Arxiv
57+阅读 · 2022年1月5日
VIP会员
相关VIP内容
专知会员服务
84+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
13+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员