We analyze the hit-and-run algorithm for sampling uniformly from an isotropic convex body $K$ in $n$ dimensions. We show that the algorithm mixes in time $\tilde{O}(n^2/ \psi_n^2)$, where $\psi_n$ is the smallest isoperimetric constant for any isotropic logconcave distribution, also known as the Kannan-Lovasz-Simonovits (KLS) constant. Our bound improves upon previous bounds of the form $\tilde{O}(n^2 R^2/r^2)$, which depend on the ratio $R/r$ of the radii of the circumscribed and inscribed balls of $K$, gaining a factor of $n$ in the case of isotropic convex bodies. Consequently, our result gives a mixing time estimate for the hit-and-run which matches the state-of-the-art bounds for the ball walk. Our main proof technique is based on an annealing of localization schemes introduced in Chen and Eldan (2022), which allows us to reduce the problem to the analysis of the mixing time on truncated Gaussian distributions.
翻译:我们用美元维度分析从异位共振体中统一取样的打击和运行算法 $K$。 我们显示, 算法混合时间 $\ tilde{O}( \\\\\\\ pisi_ n ⁇ 2)$, 美元是任何异位正对方方方块分布最小的同位素常数, 也称为 Kannan- Lovasz- Simonots (KLS) 常数 。 我们的界限比以前形式的 $\ tilde{O} (n%2 R2/2/r) 美元有改进。 我们的主要验证技术基于在陈氏和Eldan 混音器中引入的本地化方案的比例 R/ r$ 。 因此, 我们的结果给出了匹配和运行时间的混合估计值。 我们的主要验证技术基于在陈氏和Eldan 混合时段中引入的本地化方案( 2022), 从而可以将我们的时间问题降低到 Galogs 的配置分析 。