Agent-based modeling (ABM) offers powerful insights into complex systems, but its practical utility has been limited by computational constraints and simplistic agent behaviors, especially when simulating large populations. Recent advancements in large language models (LLMs) could enhance ABMs with adaptive agents, but their integration into large-scale simulations remains challenging. This work introduces a novel methodology that bridges this gap by efficiently integrating LLMs into ABMs, enabling the simulation of millions of adaptive agents. We present LLM archetypes, a technique that balances behavioral complexity with computational efficiency, allowing for nuanced agent behavior in large-scale simulations. Our analysis explores the crucial trade-off between simulation scale and individual agent expressiveness, comparing different agent architectures ranging from simple heuristic-based agents to fully adaptive LLM-powered agents. We demonstrate the real-world applicability of our approach through a case study of the COVID-19 pandemic, simulating 8.4 million agents representing New York City and capturing the intricate interplay between health behaviors and economic outcomes. Our method significantly enhances ABM capabilities for predictive and counterfactual analyses, addressing limitations of historical data in policy design. By implementing these advances in an open-source framework, we facilitate the adoption of LLM archetypes across diverse ABM applications. Our results show that LLM archetypes can markedly improve the realism and utility of large-scale ABMs while maintaining computational feasibility, opening new avenues for modeling complex societal challenges and informing data-driven policy decisions.
翻译:暂无翻译