A plethora of recent research has proposed several automated methods based on machine learning (ML) and deep learning (DL) to detect cybersickness in Virtual reality (VR). However, these detection methods are perceived as computationally intensive and black-box methods. Thus, those techniques are neither trustworthy nor practical for deploying on standalone VR head-mounted displays (HMDs). This work presents an explainable artificial intelligence (XAI)-based framework VR-LENS for developing cybersickness detection ML models, explaining them, reducing their size, and deploying them in a Qualcomm Snapdragon 750G processor-based Samsung A52 device. Specifically, we first develop a novel super learning-based ensemble ML model for cybersickness detection. Next, we employ a post-hoc explanation method, such as SHapley Additive exPlanations (SHAP), Morris Sensitivity Analysis (MSA), Local Interpretable Model-Agnostic Explanations (LIME), and Partial Dependence Plot (PDP) to explain the expected results and identify the most dominant features. The super learner cybersickness model is then retrained using the identified dominant features. Our proposed method identified eye tracking, player position, and galvanic skin/heart rate response as the most dominant features for the integrated sensor, gameplay, and bio-physiological datasets. We also show that the proposed XAI-guided feature reduction significantly reduces the model training and inference time by 1.91X and 2.15X while maintaining baseline accuracy. For instance, using the integrated sensor dataset, our reduced super learner model outperforms the state-of-the-art works by classifying cybersickness into 4 classes (none, low, medium, and high) with an accuracy of 96% and regressing (FMS 1-10) with a Root Mean Square Error (RMSE) of 0.03.
翻译:最近大量研究提出了基于机器学习(ML)和深层次学习(DL)的几种自动方法,以检测虚拟现实中的网络问题。然而,这些检测方法被视为计算密集和黑箱方法。因此,这些技术对于在独立 VR 头挂显示(HMDs)上部署既不可信也不实用。 这项工作展示了一种可以解释的人工智能(XAI)基础框架VR-LENS,用于开发网络疾病检测ML模型,解释这些模型,缩小其规模,并将其部署在基于 Smissing 现实的 Smissung A52 系统中的 Qualcomm Scaldrag 750G 进程处理或 Samsung A52 系统中。具体地说,我们首先开发了一种基于超超学习的元素 MLML 模型,用于检测网络疾病。接下来,我们采用了一种后热解解模型,例如Sharpley Aditivitive Expression (MSA)、Moration Sensional Indeal-deal Refreal refreal Redeal Redustration (Myal Syal Syal Syal Syal) 和Syal Syal Syal Syal Syal Syal Syal Syal Syal Syal Syal Syal), 和Syal Syal Syal Syal Syal Syal Syal Syds 。 。我们提出, 的模型, 的模型,用来用最高级模型, 和最高级的模型, 和最高级的智能的智能的智能的模型, 和最高级的模型, 和最高级的模型显示了我们所提出的的模型, 和最高级的模拟的模拟的智能的智能的智能的智能的模拟的模拟的模拟的模拟的模拟的模型,用来用来用来用来用来用来用来用来用来用来用来在模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟,用方法。