In this paper, we are concerned with symmetric integrators for the nonlinear relativistic Klein--Gordon (NRKG) equation with a dimensionless parameter $0<\varepsilon\ll 1$, which is inversely proportional to the speed of light. The highly oscillatory property in time of this model corresponds to the parameter $\varepsilon$ and the equation has strong nonlinearity when $\eps$ is small. There two aspects bring significantly numerical burdens in designing numerical methods. We propose and analyze a novel class of symmetric integrators which is based on some formulation approaches to the problem, Fourier pseudo-spectral method and exponential integrators. Two practical integrators up to order four are constructed by using the proposed symmetric property and stiff order conditions of implicit exponential integrators. The convergence of the obtained integrators is rigorously studied, and it is shown that the accuracy in time is improved to be $\mathcal{O}(\varepsilon^{3} \hh^2)$ and $\mathcal{O}(\varepsilon^{4} \hh^4)$ for the time stepsize $\hh$. The near energy conservation over long times is established for the multi-stage integrators by using modulated Fourier expansions. These theoretical results are achievable even if large stepsizes are utilized in the schemes. Numerical results on a NRKG equation show that the proposed integrators have improved uniform error bounds, excellent long time energy conservation and competitive efficiency.
翻译:暂无翻译