In this paper, we view the statistical inverse problems of partial differential equations (PDEs) as PDE-constrained regression and focus on learning the prediction function of the prior probability measures. From this perspective, we propose general generalization bounds for learning infinite-dimensionally defined prior measures in the style of the probability approximately correct Bayesian learning theory. The theoretical framework is rigorously defined on infinite-dimensional separable function space, which makes the theories intimately connected to the usual infinite-dimensional Bayesian inverse approach. Inspired by the concept of $\alpha$-differential privacy, a generalized condition (containing the usual Gaussian measures employed widely in the statistical inverse problems of PDEs) has been proposed, which allows the learned prior measures to depend on the measured data (the prediction function with measured data as input and the prior measure as output can be introduced). After illustrating the general theories, the specific settings of linear and nonlinear problems have been given and can be easily casted into our general theories to obtain concrete generalization bounds. Based on the obtained generalization bounds, infinite-dimensionally well-defined practical algorithms are formulated. Finally, numerical examples of the backward diffusion and Darcy flow problems are provided to demonstrate the potential applications of the proposed approach in learning the prediction function of the prior probability measures.


翻译:暂无翻译

0
下载
关闭预览

相关内容

牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
44+阅读 · 2022年2月17日
专知会员服务
33+阅读 · 2021年3月7日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员