Denoising diffusion models hold great promise for generating diverse and realistic human motions. However, existing motion diffusion models largely disregard the laws of physics in the diffusion process and often generate physically-implausible motions with pronounced artifacts such as floating, foot sliding, and ground penetration. This seriously impacts the quality of generated motions and limits their real-world application. To address this issue, we present a novel physics-guided motion diffusion model (PhysDiff), which incorporates physical constraints into the diffusion process. Specifically, we propose a physics-based motion projection module that uses motion imitation in a physics simulator to project the denoised motion of a diffusion step to a physically-plausible motion. The projected motion is further used in the next diffusion step to guide the denoising diffusion process. Intuitively, the use of physics in our model iteratively pulls the motion toward a physically-plausible space. Experiments on large-scale human motion datasets show that our approach achieves state-of-the-art motion quality and improves physical plausibility drastically (>78% for all datasets).
翻译:然而,现有的运动扩散模型在扩散过程中基本上无视物理法则,常常产生物理上难以相信的动作,如漂浮、脚滑和地面穿透。这严重影响了所产生动作的质量并限制了其真实世界应用。为了解决这个问题,我们提出了一个新的物理引导运动扩散模型(PhysDiff),它将物理限制纳入扩散过程。具体地说,我们提议了一个基于物理的运动投影模块,在物理学模拟器中使用运动模拟器模拟器来投射扩散步向物理可容运动的脱线动作。在下一个扩散步骤中,还进一步使用了所预测的动作,以指导消散扩散过程。直觉地说,我们模型中物理学的利用将运动运动运动运动运动运动运动的动作反复推向物理可移动的空间。对大规模人类运动数据设置的实验表明,我们的方法达到了状态运动质量,并大幅提高了物理可信度(所有数据集的>78% )。