Classification models learn to generalize the associations between data samples and their target classes. However, researchers have increasingly observed that machine learning practice easily leads to systematic errors in AI applications, a phenomenon referred to as AI blindspots. Such blindspots arise when a model is trained with training samples (e.g., cat/dog classification) where important patterns (e.g., black cats) are missing or periphery/undesirable patterns (e.g., dogs with grass background) are misleading towards a certain class. Even more sophisticated techniques cannot guarantee to capture, reason about, and prevent the spurious associations. In this work, we propose ESCAPE, a visual analytic system that promotes a human-in-the-loop workflow for countering systematic errors. By allowing human users to easily inspect spurious associations, the system facilitates users to spontaneously recognize concepts associated misclassifications and evaluate mitigation strategies that can reduce biased associations. We also propose two statistical approaches, relative concept association to better quantify the associations between a concept and instances, and debias method to mitigate spurious associations. We demonstrate the utility of our proposed ESCAPE system and statistical measures through extensive evaluation including quantitative experiments, usage scenarios, expert interviews, and controlled user experiments.


翻译:分类模型学习泛化数据样本与目标类别之间的关联。然而研究人员越来越发现在人工智能应用中机器学习很容易导致系统性误差,这种现象称为人工智能“盲点”。当模型使用缺少重要模式(例如黑猫)或边缘/不必要模式(例如有草地背景的狗)的训练样本(例如猫/狗分类)进行训练时,就会出现此类盲点。即使采用更为复杂的技术,也无法保证捕捉、推理和防止虚假联想。在这项工作中,我们提出了一种名为ESCAPE的视觉分析系统,它因采用“人在环流”工作流程而可以对抗系统性误差。通过允许用户轻松检查虚假联想,该系统可帮助用户自我学习有关与误分类相关的概念,并评估可减少偏差关联的缓解策略。我们还提出了两种统计方法:相对概念关联用于更好地量化概念与实例之间的关联,以及Debias方法用于减轻虚假联想。我们通过广泛的评估来演示所提出的ESCAPE系统和统计测量工具的效用,包括定量实验、使用场景、专家访谈和受控用户实验。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月8日
Arxiv
11+阅读 · 2020年12月2日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员