The development of deep neural networks and the emergence of pre-trained language models such as BERT allow to increase performance on many NLP tasks. However, these models do not meet the same popularity for tweet summarization, which can probably be explained by the lack of existing collections for training and evaluation. Our contribution in this paper is twofold : (1) we introduce a large dataset for Twitter event summarization, and (2) we propose a neural model to automatically summarize huge tweet streams. This extractive model combines in an original way pre-trained language models and vocabulary frequency-based representations to predict tweet salience. An additional advantage of the model is that it automatically adapts the size of the output summary according to the input tweet stream. We conducted experiments using two different Twitter collections, and promising results are observed in comparison with state-of-the-art baselines.
翻译:深层神经网络的发展以及诸如BERT等经过培训的语言模型的出现,可以提高许多NLP任务的业绩。然而,这些模型在推特总结方面没有达到同样的受欢迎程度,这很可能是因为缺乏现有的培训和评估收藏。我们在本文中的贡献有两个方面:(1) 我们为Twitter事件总结引入了庞大的数据集,(2) 我们提出了一个自动总结巨量推文流的神经模型。这种采掘模型以原始方式将经过培训的语文模型和词汇频度表示组合起来,以预测推文突出。这个模型的另一个优点是,它根据输入推文流自动调整产出摘要的大小。 我们利用两种不同的Twitter收藏进行了实验,并且与最新基线相比,可以观察到有希望的结果。