The development of deep neural networks and the emergence of pre-trained language models such as BERT allow to increase performance on many NLP tasks. However, these models do not meet the same popularity for tweet summarization, which can probably be explained by the lack of existing collections for training and evaluation. Our contribution in this paper is twofold : (1) we introduce a large dataset for Twitter event summarization, and (2) we propose a neural model to automatically summarize huge tweet streams. This extractive model combines in an original way pre-trained language models and vocabulary frequency-based representations to predict tweet salience. An additional advantage of the model is that it automatically adapts the size of the output summary according to the input tweet stream. We conducted experiments using two different Twitter collections, and promising results are observed in comparison with state-of-the-art baselines.


翻译:深层神经网络的发展以及诸如BERT等经过培训的语言模型的出现,可以提高许多NLP任务的业绩。然而,这些模型在推特总结方面没有达到同样的受欢迎程度,这很可能是因为缺乏现有的培训和评估收藏。我们在本文中的贡献有两个方面:(1) 我们为Twitter事件总结引入了庞大的数据集,(2) 我们提出了一个自动总结巨量推文流的神经模型。这种采掘模型以原始方式将经过培训的语文模型和词汇频度表示组合起来,以预测推文突出。这个模型的另一个优点是,它根据输入推文流自动调整产出摘要的大小。 我们利用两种不同的Twitter收藏进行了实验,并且与最新基线相比,可以观察到有希望的结果。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【AAAI2021】知识增强的视觉-语言预训练技术 ERNIE-ViL
专知会员服务
25+阅读 · 2021年1月29日
【NeurIPS 2020】融入BERT到并行序列模型
专知会员服务
25+阅读 · 2020年10月15日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
使用BERT做文本摘要
专知
23+阅读 · 2019年12月7日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
使用 Bert 预训练模型文本分类(内附源码)
数据库开发
102+阅读 · 2019年3月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Redis Stream 实践
性能与架构
3+阅读 · 2018年7月21日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
5+阅读 · 2019年10月31日
Arxiv
3+阅读 · 2019年9月5日
Arxiv
5+阅读 · 2019年8月22日
Arxiv
3+阅读 · 2018年12月18日
VIP会员
相关资讯
使用BERT做文本摘要
专知
23+阅读 · 2019年12月7日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
使用 Bert 预训练模型文本分类(内附源码)
数据库开发
102+阅读 · 2019年3月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Redis Stream 实践
性能与架构
3+阅读 · 2018年7月21日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员