Topic models aim to reveal the latent structure behind a corpus, typically conducted over a bag-of-words representation of documents. In the context of topic modeling, most vocabulary is either irrelevant for uncovering underlying topics or contains strong relationships with relevant concepts, impacting the interpretability of these topics. Furthermore, their limited expressiveness and dependency on language demand considerable computation resources. Hence, we propose a novel approach for cluster-based topic modeling that employs conceptual entities. Entities are language-agnostic representations of real-world concepts rich in relational information. To this end, we extract vector representations of entities from (i) an encyclopedic corpus using a language model; and (ii) a knowledge base using a graph neural network. We demonstrate that our approach consistently outperforms other state-of-the-art topic models across coherency metrics and find that the explicit knowledge encoded in the graph-based embeddings provides more coherent topics than the implicit knowledge encoded with the contextualized embeddings of language models.


翻译:专题模型旨在揭示一个主体背后的潜在结构,通常是用一袋字表来代表文件。在专题模型方面,大多数词汇要么与发现基本专题无关,要么与相关概念有着密切的关系,从而影响这些专题的解释性。此外,它们有限的表达性和对语言的依赖性要求大量的计算资源。因此,我们建议对集束专题模型采取新颖的办法,以使用概念实体。实体是具有丰富关联信息的真实世界概念的语言不可知性表示。为此,我们从(一) 使用语言模型的百科全书中提取实体的矢量表示;以及(二) 使用图形神经网络的知识库。我们证明,我们的方法始终超越了其他统一度指标中最先进的专题模型,并发现图表嵌入的明显知识提供了比以语言模型背景化嵌入为编码的隐含知识更为一致的专题。

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员