This article develops a new algorithm named TTRISK to solve high-dimensional risk-averse optimization problems governed by differential equations (ODEs and/or PDEs) under uncertainty. As an example, we focus on the so-called Conditional Value at Risk (CVaR), but the approach is equally applicable to other coherent risk measures. Both the full and reduced space formulations are considered. The algorithm is based on low rank tensor approximations of random fields discretized using stochastic collocation. To avoid non-smoothness of the objective function underpinning the CVaR, we propose an adaptive strategy to select the width parameter of the smoothed CVaR to balance the smoothing and tensor approximation errors. Moreover, unbiased Monte Carlo CVaR estimate can be computed by using the smoothed CVaR as a control variate. To accelerate the computations, we introduce an efficient preconditioner for the KKT system in the full space formulation.The numerical experiments demonstrate that the proposed method enables accurate CVaR optimization constrained by large-scale discretized systems. In particular, the first example consists of an elliptic PDE with random coefficients as constraints. The second example is motivated by a realistic application to devise a lockdown plan for United Kingdom under COVID-19. The results indicate that the risk-averse framework is feasible with the tensor approximations under tens of random variables.


翻译:文章开发了名为 TTRISK 的新算法, 以解决在不确定情况下由差异方程式( ODEs 和/ 或 PDEs ) 调节的高维风险反优化问题。 例如, 我们侧重于所谓的“ 风险条件值 ” ( CVaR ), 但这种方法同样适用于其他一致的风险措施。 考虑的是完整和减少的空间配制。 该算法基于使用 Stochatic 共定位分解的随机字段的低级高压近似近似值。 为了避免 CVaR 背后的目标功能的非移动性功能, 我们提议了一个适应战略, 选择平滑的 CVaR 的宽度参数, 以平衡平滑和高压近似误差。 此外, 不带偏见的 Monte Carlo CVaR 估算方法可以同样适用于其他连贯的风险措施。 为了加速计算, 我们为全空间配制的 KKTT系统引入了高效的前提条件。 数字实验表明, 拟议的方法使得 CVAR 优化 CVAR 的准确的 CVAR 优化受大型离 II 分散的系统制约。 。 特别是, IMVA 以具有现实动机的 CAL NS 的 CRODVI 度 的 的软值框架下的软值 。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
5+阅读 · 2018年3月21日
Arxiv
0+阅读 · 2022年1月12日
Arxiv
54+阅读 · 2022年1月1日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
5+阅读 · 2018年3月21日
Top
微信扫码咨询专知VIP会员