The angular halfspace depth (ahD) is a natural modification of the celebrated halfspace (or Tukey) depth to the setup of directional data. It allows us to define elements of nonparametric inference, such as the median, the inter-quantile regions, or the rank statistics, for datasets supported in the unit sphere. Despite being introduced in 1987, ahD has never received ample recognition in the literature, mainly due to the lack of efficient algorithms for its computation. With the recent progress on the computational front, ahD however exhibits the potential for developing viable nonparametric statistics techniques for directional datasets. In this paper, we thoroughly treat the theoretical properties of ahD. We show that similarly to the classical halfspace depth for multivariate data, also ahD satisfies many desirable properties of a statistical depth function. Further, we derive uniform continuity/consistency results for the associated set of directional medians, and the central regions of ahD, the latter representing a depth-based analogue of the quantiles for directional data.
翻译:暂无翻译