Although real-time facial emotion recognition is a hot topic research domain in the field of human-computer interaction, state-of the-art available datasets still suffer from various problems, such as some unrelated photos such as document photos, unbalanced numbers of photos in each class, and misleading images that can negatively affect correct classification. The 3RL dataset was created, which contains approximately 24K images and will be publicly available, to overcome previously available dataset problems. The 3RL dataset is labelled with five basic emotions: happiness, fear, sadness, disgust, and anger. Moreover, we compared the 3RL dataset with other famous state-of-the-art datasets (FER dataset, CK+ dataset), and we applied the most commonly used algorithms in previous works, SVM and CNN. The results show a noticeable improvement in generalization on the 3RL dataset. Experiments have shown an accuracy of up to 91.4% on 3RL dataset using CNN where results on FER2013, CK+ are, respectively (approximately from 60% to 85%).
翻译:虽然实时人脸情感识别是人机交互领域中一个热门的研究领域,但目前可用的最先进的数据集仍然存在各种问题,比如一些与情感无关的照片(如文档照片),每个类中照片数量不平衡以及可能会对正确分类产生负面影响的误导性图像。我们创建了约24K幅图像的新三元数据集,该数据集将会公开发布,以克服之前可用数据集的问题。新三元数据集使用五种基本情绪(高兴,害怕,悲伤,厌恶和愤怒)进行标注。此外,我们将新三元数据集与其他知名的先进数据集(FER数据集,CK +数据集)进行了比较,并应用了以前工作中最常用的算法SVM和CNN。实验结果表明,新三元数据集在泛化方面有明显的改进。实验结果显示,使用CNN在新三元数据集上的准确度可以达到91.4%,FER2013以及CK +数据集的结果分别为60%到85%。