The principle of maximum entropy is a broadly applicable technique for computing a distribution with the least amount of information possible while constrained to match empirically estimated feature expectations. However, in many real-world applications that use noisy sensors computing the feature expectations may be challenging due to partial observation of the relevant model variables. For example, a robot performing apprenticeship learning may lose sight of the agent it is learning from due to environmental occlusion. We show that in generalizing the principle of maximum entropy to these types of scenarios we unavoidably introduce a dependency on the learned model to the empirical feature expectations. We introduce the principle of uncertain maximum entropy and present an expectation-maximization based solution generalized from the principle of latent maximum entropy. Finally, we experimentally demonstrate the improved robustness to noisy data offered by our technique in a maximum causal entropy inverse reinforcement learning domain.
翻译:最大诱变率原则是一种广泛应用的技术,用于计算尽可能少信息的分配,但又受限制于与经验估计的地物预期相匹配。然而,在使用噪音传感器计算地物预期值的许多现实应用中,由于对相关模型变量的部分观察,可能具有挑战性。例如,由于环境隔离,从事学徒学习的机器人可能忽视其从中学习的物剂。我们表明,在将最大诱变率原则推广到这些类型的情景时,我们不可避免地会将所学模型作为经验性特征预期的依托。我们引入了不确定的最大诱变率原则,并提出了从潜伏最大诱变变法原则中普及的以预期值为基础的解决方案。最后,我们实验性地展示了我们技术在最大因果关系反向强化学习领域提供的噪音数据的可靠性。