Classical sampling is based on acquiring signal amplitudes at specific points in time, with the minimal sampling rate dictated by the degrees of freedom in the signal. The samplers in this framework are controlled by a global clock that operates at a rate greater than or equal to the minimal sampling rate. At high sampling rates, clocks are power-consuming and prone to electromagnetic interference. An integrate-and-fire time encoding machine (IF-TEM) is an alternative power-efficient sampling mechanism which does not require a global clock. Here, the samples are irregularly spaced threshold-based samples. In this paper, we investigate the problem of sampling finite-rate-of-innovation (FRI) signals using an IF-TEM. We provide theoretical recovery guarantees for an FRI signal with arbitrary pulse shape and without any constraint on the minimum separation between the pulses. In particular, we show how to design a sampling kernel, IF-TEM, and recovery method such that the FRI signals are perfectly reconstructed. We then propose a modification to the sampling kernel to improve noise robustness. Our results enable designing low-cost and energy-efficient analog-to-digital converters for FRI signals.
翻译:经典取样的基础是在特定时间点获得信号振幅,根据信号自由度确定最低采样率。本框架中的采样者由一个全球时钟控制,全球时钟的采样率大于或等于最低采样率。在高采样率下,时钟耗电,容易受到电磁干扰。一个集成和点火时间编码机(IF-TEM)是一种不需要全球时钟的替代节能节能采样机制。这里,样品是不定期间隔的临界点样品。在本文中,我们用IF-TEM调查了采样定时节限创新信号的问题。我们为具有任意脉冲形状的FRI信号提供了理论回收保证,对脉冲之间的最小分离没有任何限制。特别是,我们展示了如何设计取样内核、IF-TEM和回收方法,以使FRI信号得到完善。我们随后提议对取样内核进行修改,以提高噪音坚固度。我们的结果使得能够设计低成本和节能的模拟数字转换信号。