A large number of scientific studies and engineering problems involve high-dimensional spatiotemporal data with complicated relationships. In this paper, we focus on a type of space-time interaction named \emph{temporal evolution of spatial dependence (TESD)}, which is a zero time-lag spatiotemporal covariance. For this purpose, we propose a novel Bayesian nonparametric method based on non-stationary spatiotemporal Gaussian process (STGP). The classic STGP has a covariance kernel separable in space and time, failed to characterize TESD. More recent works on non-separable STGP treat location and time together as a joint variable, which is unnecessarily inefficient. We generalize STGP (gSTGP) to introduce the time-dependence to the spatial kernel by varying its eigenvalues over time in the Mercer's representation. The resulting non-stationary non-separable covariance model bares a quasi Kronecker sum structure. Finally, a hierarchical Bayesian model for the joint covariance is proposed to allow for full flexibility in learning TESD. A simulation study and a longitudinal neuroimaging analysis on Alzheimer's patients demonstrate that the proposed methodology is (statistically) effective and (computationally) efficient in characterizing TESD. Theoretic properties of gSTGP including posterior contraction (for covariance) are also studied.


翻译:大量科学研究和工程问题涉及具有复杂关系的高度空间时空数据。 在本文中, 我们侧重于一种名为 empph{ 空间依赖(TESD) 的时空互动, 这是一种零时间拉低的时空瞬时共变。 为此, 我们基于非静止的时空工序进程, 提出了一种新型的巴耶斯非参数性非参数性方法。 经典STGP在空间和时间上具有共性内核内核分解的共性内核, 未能给TESD定性。 最近关于不可分离的STGP治疗位置和时间一起作为联合变量的更多工作, 这是不必要效率的。 我们建议将STGP(GP) 普遍化, 引入空间内核内核的时空依赖性, 在Mercer的演示中, 随着时间的推移, 改变其隐性值。 由此产生的非静止的不可分离性内核共性模型暴露了一个准的 Kronecker 和时间结构。 最后, 联合可分离的Bayesian模型是联合可分离的可分离性可变性病人的级模型, 作为联合共变性变的共性变量性变量性变量,, 也提议在全面的神经内核分析中展示中,, 一种模拟的模拟性研究方法,, 。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
“CVPR 2020 接受论文列表 1470篇论文都在这了
已删除
将门创投
6+阅读 · 2019年7月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月12日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
已删除
将门创投
6+阅读 · 2019年7月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员