For all the ways convolutional neural nets have revolutionized computer vision in recent years, one important aspect has received surprisingly little attention: the effect of image size on the accuracy of tasks being trained for. Typically, to be efficient, the input images are resized to a relatively small spatial resolution (e.g. 224x224), and both training and inference are carried out at this resolution. The actual mechanism for this re-scaling has been an afterthought: Namely, off-the-shelf image resizers such as bilinear and bicubic are commonly used in most machine learning software frameworks. But do these resizers limit the on task performance of the trained networks? The answer is yes. Indeed, we show that the typical linear resizer can be replaced with learned resizers that can substantially improve performance. Importantly, while the classical resizers typically result in better perceptual quality of the downscaled images, our proposed learned resizers do not necessarily give better visual quality, but instead improve task performance. Our learned image resizer is jointly trained with a baseline vision model. This learned CNN-based resizer creates machine friendly visual manipulations that lead to a consistent improvement of the end task metric over the baseline model. Specifically, here we focus on the classification task with the ImageNet dataset, and experiment with four different models to learn resizers adapted to each model. Moreover, we show that the proposed resizer can also be useful for fine-tuning the classification baselines for other vision tasks. To this end, we experiment with three different baselines to develop image quality assessment (IQA) models on the AVA dataset.


翻译:对于革命性神经网近年来使计算机视觉发生革命的所有方式来说,一个重要方面受到的注意令人惊讶地很少:图像大小对所培训任务准确性的影响。通常,为了提高效率,输入图像被调整成相对较小的空间分辨率(例如224x224),并且在这个决议中进行训练和推论。这种重新缩放的实际机制是事后思考的:即,大多数机器学习软件框架中通常使用双线和双立方体等现成图像振荡器。但是,这些重塑器是否限制经过训练的网络的任务性能?答案是肯定的。我们显示,典型的线性重塑图像可以被替换成相对较小的空间分辨率分辨率分辨率分辨率分辨率(例如224x2242244),而在本决议中,既进行培训和推导力,又提高降级图像的感知性质量,而我们所拟议的再现的再生图像再造精度则提高任务性能质量。我们所学的图像再生图像再造精度与基线模型共同训练,我们所学的基线级质量模型 。这个基于CNN-Regial的图像网络的典型数据实验可以使机更精确的模型更精确地调整。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
3+阅读 · 2018年11月14日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员