Recommender systems (RSs) have emerged as very useful tools to help customers with their decision-making process, find items of their interest, and alleviate the information overload problem. There are two different lines of approaches in RSs: (1) general recommenders with the main goal of discovering long-term users' preferences, and (2) sequential recommenders with the main focus of capturing short-term users' preferences in a session of user-item interaction (here, a session refers to a record of purchasing multiple items in one shopping event). While considering short-term users' preferences may satisfy their current needs and interests, long-term users' preferences provide users with the items that they may interact with, eventually. In this thesis, we first focus on improving the performance of general RSs. Most of the existing general RSs tend to exploit the users' rating patterns on common items to detect similar users. The data sparsity problem (i.e. the lack of available information) is one of the major challenges for the current general RSs, and they may fail to have any recommendations when there are no common items of interest among users. We call this problem data sparsity with no feedback on common items (DSW-n-FCI). To overcome this problem, we propose a personality-based RS in which similar users are identified based on the similarity of their personality traits.


翻译:建议系统(RSs)已成为帮助客户进行决策过程、发现其感兴趣的项目和缓解信息超载问题的非常有用的工具。在RSs,有两种不同的做法:(1) 以发现长期用户偏好为主要目标的一般推荐人,和(2) 以在用户项目互动会议上捕捉短期用户偏好为主要重点的顺序推荐人(这里,会议指的是在一次购物活动中购买多种物品的记录),虽然考虑短期用户的偏好可能满足其当前的需要和利益,但长期用户的偏好最终为用户提供了他们可以互动的物品。在这个论文中,我们首先侧重于改进一般RSs的业绩。大多数现有的普通RSs倾向于利用用户在共同项目的评级模式来检测类似的用户。数据紧张问题(即缺乏现有信息)是当前一般RSs的主要挑战之一,当用户没有共同感兴趣的物品时,他们可能得不到任何建议。我们称这个问题为数据紧张,没有基于共同的SFC的类似特性。我们称之为“SFS-FC”的反馈。

0
下载
关闭预览

相关内容

RSS(简易信息聚合,也叫聚合内容)是一种描述和同步网站内容的格式。RSS可以是以下三个解释的其中一个: Really Simple Syndication;RDF (Resource Description Framework) Site Summary; Rich Site Summary。但其实这三个解释都是指同一种Syndication的技术。
专知会员服务
32+阅读 · 2021年2月12日
【2020新书】社交媒体挖掘,212pdf,Mining Social Media
专知会员服务
60+阅读 · 2020年7月30日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
8+阅读 · 2018年2月23日
VIP会员
Top
微信扫码咨询专知VIP会员