Recommender systems (RSs) have emerged as very useful tools to help customers with their decision-making process, find items of their interest, and alleviate the information overload problem. There are two different lines of approaches in RSs: (1) general recommenders with the main goal of discovering long-term users' preferences, and (2) sequential recommenders with the main focus of capturing short-term users' preferences in a session of user-item interaction (here, a session refers to a record of purchasing multiple items in one shopping event). While considering short-term users' preferences may satisfy their current needs and interests, long-term users' preferences provide users with the items that they may interact with, eventually. In this thesis, we first focus on improving the performance of general RSs. Most of the existing general RSs tend to exploit the users' rating patterns on common items to detect similar users. The data sparsity problem (i.e. the lack of available information) is one of the major challenges for the current general RSs, and they may fail to have any recommendations when there are no common items of interest among users. We call this problem data sparsity with no feedback on common items (DSW-n-FCI). To overcome this problem, we propose a personality-based RS in which similar users are identified based on the similarity of their personality traits.
翻译:建议系统(RSs)已成为帮助客户进行决策过程、发现其感兴趣的项目和缓解信息超载问题的非常有用的工具。在RSs,有两种不同的做法:(1) 以发现长期用户偏好为主要目标的一般推荐人,和(2) 以在用户项目互动会议上捕捉短期用户偏好为主要重点的顺序推荐人(这里,会议指的是在一次购物活动中购买多种物品的记录),虽然考虑短期用户的偏好可能满足其当前的需要和利益,但长期用户的偏好最终为用户提供了他们可以互动的物品。在这个论文中,我们首先侧重于改进一般RSs的业绩。大多数现有的普通RSs倾向于利用用户在共同项目的评级模式来检测类似的用户。数据紧张问题(即缺乏现有信息)是当前一般RSs的主要挑战之一,当用户没有共同感兴趣的物品时,他们可能得不到任何建议。我们称这个问题为数据紧张,没有基于共同的SFC的类似特性。我们称之为“SFS-FC”的反馈。