Negative Biased Temperature Instability (NBTI)-induced aging is one of the critical reliability threats in nano-scale devices. This paper makes the first attempt to study the NBTI aging in the on-chip weight memories of deep neural network (DNN) hardware accelerators, subjected to complex DNN workloads. We propose DNN-Life, a specialized aging analysis and mitigation framework for DNNs, which jointly exploits hardware- and software-level knowledge to improve the lifetime of a DNN weight memory with reduced energy overhead. At the software-level, we analyze the effects of different DNN quantization methods on the distribution of the bits of weight values. Based on the insights gained from this analysis, we propose a micro-architecture that employs low-cost memory-write (and read) transducers to achieve an optimal duty-cycle at run time in the weight memory cells, thereby balancing their aging. As a result, our DNN-Life framework enables efficient aging mitigation of weight memory of the given DNN hardware at minimal energy overhead during the inference process.
翻译:负环境温度不稳(NBTI)导致的衰老是纳米级装置的可靠性严重威胁之一。本文件首次尝试研究NBTI在深神经网络(DNN)硬件加速器(DNN)的芯片重量记忆中不断老化的问题,但需经过复杂的DNN工作量。我们提议DNN-Life(DNNN-Life)(DNNN-Life)(DNNN-Lis)的专门老化分析和缓解框架,它共同利用硬件和软件知识来改善DNN(DNN)体重记忆的寿命,同时减少能源管理。在软件一级,我们分析了不同的DNNN量化方法对重量值分配的影响。根据从这一分析中获得的洞见,我们提出了一个微型结构,利用低成本的记忆-线(和读取)导体在重量记忆细胞运行时实现最佳的值周期,从而平衡它们的衰老。结果,我们的DNNNF-LF框架使得在推断过程中在最低能源顶部对给的DNNF硬件的重量记忆有效不断减少。