In a cell-free wireless network, distributed access points (APs) jointly serve all user equipments (UEs) within the their coverage area by using the same time/frequency resources. In this paper, we develop a novel downlink cell-free multiple-input multiple-output (MIMO) millimeter wave (mmWave) network architecture that enables all APs and UEs to dynamically self-partition into a set of independent cell-free subnetworks in a time-slot basis. For this, we propose several network partitioning algorithms based on deep reinforcement learning (DRL). Furthermore, to mitigate interference between different cell-free subnetworks, we develop a novel hybrid analog beamsteering-digital beamforming model that zero-forces interference among cell-free subnetworks and at the same time maximizes the instantaneous sum-rate of all UEs within each subnetwork. Specifically, the hybrid beamforming model is implemented by using a novel mixed DRL-convex optimization method in which analog beamsteering between APs and UEs is conducted based on DRL while digital beamforming is modeled and solved as a convex optimization problem. The DRL models for network clustering and hybrid beamsteering are combined into a single hierarchical DRL design that enables exchange of DRL agents' experiences during both network training and operation. We also benchmark the performance of DRL models for clustering and beamsteering in terms of network performance, convergence rate, and computational complexity.


翻译:在无细胞无线网络中,分布式接入点(APs)通过使用相同的时间/频率资源,共同为覆盖区内的所有用户设备(UES)服务。在本文中,我们开发了一个新型的下链接无细胞多输入多输出多输出多输出多输出多输出多输出多输出多输出多输出多输出多输出(MIIMO)千米网络(mmWave)网络结构,使所有APs和Ues能够动态地自我分割成一套独立的无细胞子网络。为此,我们提议了基于深度强化学习(DRL)的多个网络配置配置系统。此外,为了减少不同无细胞亚网络之间的干扰,我们开发了一个新型的混合模拟光学-数字化多输出多输出多输出多输出多输出多输出多输出多输出多输出多输出(MIMIMO)网络模型,同时使每个子网络中的所有UES的瞬时总和速率最大化。具体来说,混合组合模式是通过使用新型混合的DR-conx优化方法实施,其中,APs和UNUE的模拟在无细胞分组亚缩缩阵列(DR) 运行运行运行模式中,同时进行一个用于Siral DRADRDRDRDRDRB的运行模式,同时进行一个数字化的升级的运行模式, 和升级的运行模式,在一次升级的模型中, 和升级的运行中, 和升级的运行中, 的运行中,用于的运行中, 和升级的运行的运行的运行中,用于格式的运行模式是用于模式是用于 和升级的升级的运行成成成成成成成成成成成成成的模型, 格式的模型,,用于BRVDRVDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDBDRDBDBDBDBDR 的模型,用于的模型,用于的模型,用于的模型,用于的模型,用于的模型,用于中,用于的模型,用于的模型,用于的模型是用于的模型,用于的模型,用于的模型的模型,用于的升级的模型,用于的升级的升级的

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
Arxiv
6+阅读 · 2020年10月8日
HAQ: Hardware-Aware Automated Quantization
Arxiv
6+阅读 · 2018年11月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
Top
微信扫码咨询专知VIP会员