The goal of semi-supervised learning is to utilize the unlabeled, in-domain dataset U to improve models trained on the labeled dataset D. Under the context of large-scale language-model (LM) pretraining, how we can make the best use of U is poorly understood: is semi-supervised learning still beneficial with the presence of large-scale pretraining? should U be used for in-domain LM pretraining or pseudo-label generation? how should the pseudo-label based semi-supervised model be actually implemented? how different semi-supervised strategies affect performances regarding D of different sizes, U of different sizes, etc. In this paper, we conduct comprehensive studies on semi-supervised learning in the task of text classification under the context of large-scale LM pretraining. Our studies shed important lights on the behavior of semi-supervised learning methods: (1) with the presence of in-domain pretraining LM on U, open-domain LM pretraining is unnecessary; (2) both the in-domain pretraining strategy and the pseudo-label based strategy introduce significant performance boosts, with the former performing better with larger U, the latter performing better with smaller U, and the combination leading to the largest performance boost; (3) self-training (pretraining first on pseudo labels D' and then fine-tuning on D) yields better performances when D is small, while joint training on the combination of pseudo labels D' and the original dataset D yields better performances when D is large. Using semi-supervised learning strategies, we are able to achieve a performance of around 93.8% accuracy with only 50 training data points on the IMDB dataset, and a competitive performance of 96.6% with the full IMDB dataset. Our work marks an initial step in understanding the behavior of semi-supervised learning models under the context of large-scale pretraining.


翻译:半监督学习的目的是如何利用未贴标签的半监督的模型? 如何实际实施基于伪标签的半监督的模型? 不同的半监督战略如何影响不同尺寸的D级、不同尺寸的U级等的性能。 在大规模语言模版(LM)预培训中,我们如何最佳利用U? 在大规模LM预培训的环境下,我们如何在半监督的学习仍然有益吗? 我们的研究是否应该将U用于在现场的LM预培训或假标签生成? 如何实际实施基于伪标签的半监督的模型? 不同的半监督战略如何影响不同尺寸的D级、不同尺寸的U。 在大规模语言模版(LM)预培训中,我们对半监督的文本分类任务学习进行全面的全面研究? 我们的研究会为半监督的学习方法的行为提供了重要的灯光:(1) 在内部的IMLM预培训 U, 公开的IMB预培训中, 我们的原版前的D.

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
已删除
将门创投
12+阅读 · 2019年7月1日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
VIP会员
相关资讯
已删除
将门创投
12+阅读 · 2019年7月1日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员