Understanding what graph layout human prefer and why they prefer is significant and challenging due to the highly complex visual perception and cognition system in human brain. In this paper, we present the first machine learning approach for predicting human preference for graph layouts. In general, the data sets with human preference labels are limited and insufficient for training deep networks. To address this, we train our deep learning model by employing the transfer learning method, e.g., exploiting the quality metrics, such as shape-based metrics, edge crossing and stress, which are shown to be correlated to human preference on graph layouts. Experimental results using the ground truth human preference data sets show that our model can successfully predict human preference for graph layouts. To our best knowledge, this is the first approach for predicting qualitative evaluation of graph layouts using human preference experiment data.
翻译:由于人类大脑的视觉感知和认知系统高度复杂,人们更喜欢何种图形布局和为什么更喜欢这些图布局是重要和具有挑战性的。在本文中,我们提出了预测人类更喜欢图形布局的第一种机器学习方法。一般而言,带有人类更喜欢标签的数据集有限,不足以培训深层网络。为了解决这个问题,我们通过使用传输学习方法来培训我们的深层次学习模式,例如利用质量衡量标准,如基于形状的计量标准、边缘交叉和压力,这些都显示与人类在图形布局上的偏好相关。使用地面真理人类更喜欢数据集的实验结果显示,我们的模型能够成功地预测人类更喜欢图形布局。根据我们的最佳知识,这是利用人类更喜欢的实验数据预测图表布局的质量评估的第一个方法。