Urban anomaly predictions, such as traffic accident prediction and crime prediction, are of vital importance to smart city security and maintenance. Existing methods typically use deep learning to capture the intra-dependencies in spatial and temporal dimensions. However, numerous key challenges remain unsolved, for instance, sparse zero-inflated data due to urban anomalies occurring with low frequency (which can lead to poor performance on real-world datasets), and both intra- and inter-dependencies of abnormal patterns across spatial, temporal, and semantic dimensions. Moreover, a unified approach to predict multiple kinds of anomaly is left to explore. In this paper, we propose STS to jointly capture the intra- and inter-dependencies between the patterns and the influential factors in three dimensions. Further, we use a multi-task prediction module with a customized loss function to solve the zero-inflated issue. To verify the effectiveness of the model, we apply it to two urban anomaly prediction tasks, crime prediction and traffic accident risk prediction, respectively. Experiments on two application scenarios with four real-world datasets demonstrate the superiority of STS, which outperforms state-of-the-art methods in the mean absolute error and the root mean square error by 37.88% and 18.10% on zero-inflated datasets, and, 60.32% and 37.28% on non-zero datasets, respectively.
翻译:城市异常预测(如交通事故和犯罪预测)对智能城市安全和维护至关重要。现有方法通常使用深度学习来捕捉空间和时间维度内的内在依赖性。然而,许多关键挑战仍未解决,例如,由于城市异常发生频率较低而导致的稀疏的零膨胀数据(这可能导致在实际数据集上表现不佳),以及异常模式在空间、时间和语义维度上的内部和相互依赖性。此外,开展统一的预测多种异常的方法有待探索。在本文中,我们提出了一种名为STS的方法,可以联合捕捉三个维度中的模式和影响因素之间的内部和相互依赖性。此外,我们使用自定义损失功能的多任务预测模块来解决零膨胀问题。为了验证模型的有效性,我们将其应用于两个城市异常预测任务:犯罪预测和交通事故风险预测。在四个真实数据集的两个应用场景的实验中,STS的表现优于现有技术,平均绝对误差和均方根误差分别比零膨胀数据集表现出卓越的37.88%和18.10%,而在非零数据集中,则分别优于60.32%和37.28%的现有技术。