This paper presents a novel design update strategy for topology optimization, as an iterative optimization. The key contribution lies in incorporating a design updater concept with quantum annealing, applicable to both truss and continuum structures. To align with density-based approaches in topology optimization, these updaters are formulated through a multiplicative relationship to represent the design material and serve as design variables. Specifically, structural analysis is conducted on a classical computer using the finite element method, while quantum annealing is utilized for topology updates. The primary objective of the framework is to minimize compliance under a volume constraint. An encoding formulation for the design variables is derived, and the penalty method along with a slack variable is employed to transform the inequality volume constraint. Subsequently, the optimization problem for determining the updater is formulated as a Quadratic Unconstrained Binary Optimization (QUBO) model. To demonstrate its performance, the developed design framework is tested on different computing platforms to perform design optimization for truss structures, as well as 2D and 3D continuum structures. Numerical results indicate that the proposed framework successfully finds optimal topologies similar to benchmark results. Furthermore, the results show the advantage of reduced time in finding an optimal design using quantum annealing compared to simulated annealing.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2021年3月16日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员