A conjecture of Alon, Krivelevich, and Sudakov states that, for any graph $F$, there is a constant $c_F > 0$ such that if $G$ is an $F$-free graph of maximum degree $\Delta$, then $\chi(G) \leq c_F \Delta / \log\Delta$. It follows from work by Davies, Kang, Pirot, and Sereni that this conjecture holds for $F$ bipartite; moreover, if $G$ is $K_{t,t}$-free, then $\chi(G) \leq (t + o(1)) \Delta / \log\Delta$ as $\Delta \to \infty$. We improve this bound to $(1+o(1)) \Delta/\log \Delta$, making the constant factor independent of $t$. We further extend our result to the DP-coloring setting (also known as correspondence coloring), introduced by Dvo\v{r}\'ak and Postle.
翻译:Alon、Krivelevich和Sudakov的注解表明,对于任何一张F$的图表,有一个固定的$c_F > 0美元,因此,如果G$是最高度为$\Delta$的无F美元图,那么,$\chi(G)\leq c_F\Delta/\log\Delta\Delta$。根据Davies、Kang、Pirot和Sereni的工作结果,这一预测为美元双价;此外,如果G$是$t,t}$免费,然后$\chi(G)\chi(G)\leq(t+o(1))\delta/\log\Delta$作为$\Delta\ to\infty$。我们将这一约束改进为$(1+o(1))\Delta/log\Delta$,使固定系数独立于$。我们进一步将我们的结果扩大到DP-crow 设置(也称为彩色)。