Integrating multiple LiDAR sensors can significantly enhance a robot's perception of the environment, enabling it to capture adequate measurements for simultaneous localization and mapping (SLAM). Indeed, solid-state LiDARs can bring in high resolution at a low cost to traditional spinning LiDARs in robotic applications. However, their reduced field of view (FoV) limits performance, particularly indoors. In this paper, we propose a tightly-coupled multi-modal multi-LiDAR-inertial SLAM system for surveying and mapping tasks. By taking advantage of both solid-state and spinnings LiDARs, and built-in inertial measurement units (IMU), we achieve both robust and low-drift ego-estimation as well as high-resolution maps in diverse challenging indoor environments (e.g., small, featureless rooms). First, we use spatial-temporal calibration modules to align the timestamp and calibrate extrinsic parameters between sensors. Then, we extract two groups of feature points including edge and plane points, from LiDAR data. Next, with pre-integrated IMU data, an undistortion module is applied to the LiDAR point cloud data. Finally, the undistorted point clouds are merged into one point cloud and processed with a sliding window based optimization module. From extensive experiment results, our method shows competitive performance with state-of-the-art spinning-LiDAR-only or solid-state-LiDAR-only SLAM systems in diverse environments. More results, code, and dataset can be found at \href{https://github.com/TIERS/multi-modal-loam}{https://github.com/TIERS/multi-modal-loam}.
翻译:整合多种激光雷达传感器可以大大提高机器人对环境的感知,使其能够为同时进行本地化和绘图(SLAM)获取足够的测量数据。事实上,固态激光雷达能够以低成本在机器人应用中以传统旋转激光雷达低廉的成本带来高分辨率。然而,它们缩小的视野范围(FoV)限制了性能,特别是室内的性能。在本文中,我们提议在测量和绘图任务时使用一个精密的多式多式多式多式激光雷达内晶体系 SLM 系统。通过利用固态状态和旋转激光雷达和内惯性测量单位(IMU),我们既能实现强又低度的自我测量,又能在多种具有挑战性的室内环境(例如小型、无特征的房间)中实现高分辨率地图。首先,我们使用空间-脉冲调调调调调调调调调调调调调调调调调传感器之间的参数模块。然后,我们从LiDAR数据的边点和平流调调调调调调调调调调调调调调调调调调调调调两个地点,从Li-ARAR数据中,从一个前的云层-MAL-de-Sl-Sl-Sl-Sl-SL-Sl-Sl-Sl-S-Sl-Sl-S-S-S-S-S-Sl-S-S-S-S-S-S-S-S-S-S-S-S-S-SL-Sl-S-S-S-S-SL-SL-SL-SL-l-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-</s>