This study is concerned with the determination of optimal appointment times for a sequence of jobs with uncertain duration. We investigate the data-driven Appointment Scheduling Problem (ASP) when one has $n$ observations of $p$ features (covariates) related to the jobs as well as historical data. We formulate ASP as an Integrated Estimation and Optimization problem using a task-based loss function. We justify the use of contexts by showing that not including the them yields to inconsistent decisions, which translates to sub-optimal appointments. We validate our approach through two numerical experiments.


翻译:这项研究涉及为一系列期限不确定的工作确定最佳任用时间,我们调查数据驱动的任用日程安排问题(ASP),当一个人在工作和历史数据方面有零美元观测值时,我们调查以数据驱动的任用日程安排问题(Colplates),我们用基于任务的损失功能将ASP设计成综合估计和优化问题。我们用基于任务的损失功能来证明使用背景是合理的,我们通过两个数字实验来验证我们的做法。

0
下载
关闭预览

相关内容

ASP是Active Server Page的缩写,意为“动态服务器页面”。ASP是微软公司开发的代替CGI脚本程序的一种应用,它可以与数据库和其它程序进行交互,是一种简单、方便的编程工具。
面向健康的大数据与人工智能,103页ppt
专知会员服务
110+阅读 · 2020年12月29日
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
18+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月10日
Many Proxy Controls
Arxiv
0+阅读 · 2021年10月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员