Simulating the time evolution of Partial Differential Equations (PDEs) of large-scale systems is crucial in many scientific and engineering domains such as fluid dynamics, weather forecasting and their inverse optimization problems. However, both classical solvers and recent deep learning-based surrogate models are typically extremely computationally intensive, because of their local evolution: they need to update the state of each discretized cell at each time step during inference. Here we develop Latent Evolution of PDEs (LE-PDE), a simple, fast and scalable method to accelerate the simulation and inverse optimization of PDEs. LE-PDE learns a compact, global representation of the system and efficiently evolves it fully in the latent space with learned latent evolution models. LE-PDE achieves speed-up by having a much smaller latent dimension to update during long rollout as compared to updating in the input space. We introduce new learning objectives to effectively learn such latent dynamics to ensure long-term stability. We further introduce techniques for speeding-up inverse optimization of boundary conditions for PDEs via backpropagation through time in latent space, and an annealing technique to address the non-differentiability and sparse interaction of boundary conditions. We test our method in a 1D benchmark of nonlinear PDEs, 2D Navier-Stokes flows into turbulent phase and an inverse optimization of boundary conditions in 2D Navier-Stokes flow. Compared to state-of-the-art deep learning-based surrogate models and other strong baselines, we demonstrate up to 128x reduction in the dimensions to update, and up to 15x improvement in speed, while achieving competitive accuracy.
翻译:模拟大型系统部分差异化(PDE)的时间演进在许多科学和工程领域,例如流体动态、天气预报及其反向优化问题中至关重要。然而,古典求解器和最近的深学习代孕模型通常都是在计算上极为密集的,因为它们的局部演进:它们需要更新每个离散的单元格在推论过程中的每个阶段的状态。在这里,我们开发了一个简单、快速和可缩放的方法,以加速PDE的模拟和反向优化。 LE-PDE学习一个紧凑的、全球的系统代表制,并有效地在潜在空间中以学习的潜深深层进化模型来充分演化。 LE-PDE通过一个小得多的潜化细胞化单元,在与输入空间的不断更新相比,在长期推出过程中,我们引入了新的学习目标,以有效地学习这种潜伏动态,以确保长期稳定。我们进一步引入了通过在潜伏空间的回流、低位流中,在系统内部的递增流中,在潜流中将PDE的精度流流和低边界的不断递增过程中,在我们的一个测试方法中,在不断的递增的递化的递增中,在不断的递增的递增中,在不断更新中将PDE条件中,在不断的递增的递增的递增的递化的递增中,并逐步地方法中,在不断的递化的递化的递化的递入中将的递入中,以显示的推向中,在不断地基技术中,以中将的推向中,在不断的推向中,在一种我们的递化的递入中,在不断的递进的递进的递进的递化的递入的递入的递入的递入中,在不断的递入中,在不断的递入中将的递入中将的递入中将的推入中将的推入的推入的推入的推入中将的推入的推入的推入的推入的推入中将的推。