When random effects are correlated with sample design variables, the usual approach of employing individual survey weights (constructed to be inversely proportional to the unit survey inclusion probabilities) to form a pseudo-likelihood no longer produces asymptotically unbiased inference. We construct a weight-exponentiated formulation for the random effects distribution that achieves unbiased inference for generating hyperparameters of the random effects. We contrast our approach with frequentist methods that rely on numerical integration to reveal that only the Bayesian method achieves both unbiased estimation with respect to the sampling design distribution and consistency with respect to the population generating distribution. Our simulations and real data example for a survey of business establishments demonstrate the utility of our approach across different modeling formulations and sampling designs. This work serves as a capstone for recent developmental efforts that combine traditional survey estimation approaches with the Bayesian modeling paradigm and provides a bridge across the two rich but disparate sub-fields.


翻译:当随机效应与抽样设计变量相关时,通常采用个别调查权重(被认为与单位调查包含的概率成反比)来形成假象的概率,不再产生无症状的不带偏见的推断。我们为随机效应分布设计了一个加权光化配方,这种随机效应分布可以得出不带偏见的推论,产生随机效应的超参数。我们将我们的方法与依赖数字集成的常客方法作对比,以表明只有巴伊西亚方法在抽样设计分布和人口分布方面实现无偏见的估计。我们用于调查商业机构的模拟和真实数据实例显示了我们在不同模型配方和抽样设计方面的做法的效用。这项工作是近期发展努力的顶点,将传统的调查估计方法与巴伊西亚模型化模式相结合,并提供跨越两个丰富但互不相容的子领域的桥梁。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
专知会员服务
50+阅读 · 2021年6月30日
专知会员服务
47+阅读 · 2021年4月24日
专知会员服务
50+阅读 · 2020年12月14日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
63+阅读 · 2020年12月11日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】金融数学概念和计算方法的导论,290页pdf
专知会员服务
58+阅读 · 2020年11月16日
专知会员服务
52+阅读 · 2020年9月7日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
10+阅读 · 2021年2月18日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关VIP内容
专知会员服务
28+阅读 · 2021年8月2日
专知会员服务
50+阅读 · 2021年6月30日
专知会员服务
47+阅读 · 2021年4月24日
专知会员服务
50+阅读 · 2020年12月14日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
63+阅读 · 2020年12月11日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】金融数学概念和计算方法的导论,290页pdf
专知会员服务
58+阅读 · 2020年11月16日
专知会员服务
52+阅读 · 2020年9月7日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员