The cyclically equivariant neural decoder was recently proposed in [Chen-Ye, International Conference on Machine Learning, 2021] to decode cyclic codes. In the same paper, a list decoding procedure was also introduced for two widely used classes of cyclic codes -- BCH codes and punctured Reed-Muller (RM) codes. While the list decoding procedure significantly improves the Frame Error Rate (FER) of the cyclically equivariant neural decoder, the Bit Error Rate (BER) of the list decoding procedure is even worse than the unique decoding algorithm when the list size is small. In this paper, we propose an improved version of the list decoding algorithm for BCH codes and punctured RM codes. Our new proposal significantly reduces the BER while maintaining the same (in some cases even smaller) FER. More specifically, our new decoder provides up to $2$dB gain over the previous list decoder when measured by BER, and the running time of our new decoder is $15\%$ smaller. Code available at https://github.com/improvedlistdecoder/code
翻译:最近[Chen-Ye, 国际机器学习会议, 2021] 提议了周期性等离子神经解码器,以解译周期代码。在同一文件中,还针对两种广泛使用的循环编码 -- -- BCH 代码和穿刺Reed-Muler(RM)代码,引入了列表解码程序。虽然列表解码程序显著改进了周期性等离子神经解码器的框架错误率(FER),但清单解码程序的Bit错误率(BER)比清单解码程序在清单大小小时独有的解码算法还要差得多。在本文件中,我们提议改进了BCH代码和刺破RM代码的分类解码算法的版本。我们的新提案大大减少了该目录,同时保留了相同的(在某些情况下甚至更小)FER。更具体地说,我们的新解码在用BER测量时为前一个解码提供了高达2美元B的收益,而我们新的解码的运行时间是15美元/decodeder decoder at at http://s gropprgister/comcodecodecodecodecode.