Lung X-ray images, if processed using statistical and computational methods, can distinguish pneumonia from COVID-19. The present work shows that it is possible to extract lung X-ray characteristics to improve the methods of examining and diagnosing patients with suspected COVID-19, distinguishing them from malaria, dengue, H1N1, tuberculosis, and Streptococcus pneumonia. More precisely, an intelligent computational model was developed to process lung X-ray images and classify whether the image is of a patient with COVID-19. The images were processed and extracted their characteristics. These characteristics were the input data for an unsupervised statistical learning method, PCA, and clustering, which identified specific attributes of X-ray images with Covid-19. The introduction of statistical models allowed a fast algorithm, which used the X-means clustering method associated with the Bayesian Information Criterion (CIB). The developed algorithm efficiently distinguished each pulmonary pathology from X-ray images. The method exhibited excellent sensitivity. The average recognition accuracy of COVID-19 was 0.93 and 0.051.


翻译:通过统计和计算方法处理肺部X射线图像,可以区分肺炎和COVID-19。目前的工作表明,可以提取肺部X射线特征,以改进对疑似COVID-19的病人进行检查和诊断的方法,将他们与疟疾、登革热、H1N1、肺结核和Streptococcccccus肺炎区分开来。更准确地说,开发了一个智能计算模型,处理肺部X射线图像,并区分该图像是否为患有COVID-19的病人。这些图像经过处理并提取了它们的特征。这些特征是用于一种未经监督的统计学习方法、五氯苯甲醚和聚群的输入数据,其中确定了与Covid-19的X射线图像的具体属性。采用统计模型可以快速算法,使用与Bayesian信息标准相关的X手段组方法。开发的算法有效地区分了每一种肺部病理学和X光图像。该方法具有很好的敏感性。COVID-19的平均识别精确度为0.93和0.051。

0
下载
关闭预览

相关内容

深度学习图像检索(CBIR): 十年之大综述
专知会员服务
46+阅读 · 2020年12月5日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
独家 | 基于NLP的COVID-19虚假新闻检测(附代码)
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月11日
VIP会员
相关资讯
独家 | 基于NLP的COVID-19虚假新闻检测(附代码)
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员