Vector autoregression model is ubiquitous in classical time series data analysis. With the rapid advance of social network sites, time series data over latent graph is becoming increasingly popular. In this paper, we develop a novel Bayesian grouped network autoregression model to simultaneously estimate group information (number of groups and group configurations) and group-wise parameters. Specifically, a graphically assisted Chinese restaurant process is incorporated under framework of the network autoregression model to improve the statistical inference performance. An efficient Markov chain Monte Carlo sampling algorithm is used to sample from the posterior distribution. Extensive studies are conducted to evaluate the finite sample performance of our proposed methodology. Additionally, we analyze two real datasets as illustrations of the effectiveness of our approach.
翻译:在传统时间序列数据分析中,矢量自动递减模式是典型时间序列数据分析中普遍存在的模式。随着社交网络网站的快速推进,时间序列数据在潜影图上越来越受欢迎。在本文中,我们开发了一个新型的贝叶斯组合网络自动递减模型,以同时估计群体信息(群体数量和群体配置)和群体参数。具体地说,在网络自动递减模型的框架内纳入了一个图形化的中国餐馆流程,以改善统计推论性能。一个高效的马尔科夫连锁Monte Carlo采样算法用于从后方分布中取样。我们进行了广泛的研究,以评价我们拟议方法的有限样本性能。此外,我们分析了两个真实的数据集,作为我们方法有效性的例证。