As neural network classifiers are deployed in real-world applications, it is crucial that their failures can be detected reliably. One practical solution is to assign confidence scores to each prediction, then use these scores to filter out possible misclassifications. However, existing confidence metrics are not yet sufficiently reliable for this role. This paper presents a new framework that produces a more reliable quantitative metric for detecting misclassification errors. This framework, RED, builds an error detector on top of the base classifier and estimates uncertainty of the detection scores using Gaussian Processes. Empirical comparisons with other error detection methods on 125 UCI datasets demonstrate that this approach is effective. Additional implementations on two probabilistic base classifiers and a large deep learning architecture solving a vision task further confirm the robustness of the method. A case study involving out-of-distribution and adversarial samples shows potential of the proposed method to improve trustworthiness of neural network classifiers more broadly in the future.


翻译:由于神经网络分类器被部署在现实世界的应用中,因此必须可靠地检测出它们的故障。一个实际的解决办法是给每个预测分配信任分数,然后用这些分数来过滤可能的错误分类。然而,现有的信心度量对于这一作用来说还不够可靠。本文提出了一个新的框架,为检测错误分类错误提供了更可靠的量化度量。这个框架,RED,在基础分类器之上建立一个错误检测器,并利用Gaussian进程估算探测分数的不确定性。在125 UCI数据集中与其他错误检测方法进行的经验性比较表明这一方法是有效的。另外,对两个概率性基本分类器和解决愿景任务的大型深层学习结构的实施进一步证实了该方法的稳健性。一个涉及分配外和对抗性抽样的案例研究表明,拟议的方法有可能在未来更广泛地提高神经网络分类器的可信赖性。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月2日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
VIP会员
相关VIP内容
专知会员服务
17+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员