This work presents new uniform preconditioners for the discrete Laplace-Beltrami operator on hypersurfaces. In particular, within the framework of fast auxiliary space preconditioning (FASP), we develop optimal multilevel preconditioners for the Laplace-Beltrami type equation discretized by surface Lagrange, nonconforming linear, and discontinuous Galerkin elements. The framework naturally deals with semi-definite problems on a closed surface. Numerical experiments are presented to illustrate the efficiency of our preconditioners.
翻译:这项工作为离散的Laplace-Beltrami操作员在超表层上提供了新的统一先决条件,特别是在快速辅助空间先决条件(FASP)框架内,我们为拉place-Beltrami型方程式开发了最佳多级先决条件,该方程式由表面拉格、不兼容线性和不连续的Galerkin元素分开。框架自然涉及封闭表面的半无限期问题。介绍了数字实验,以说明我们先决条件的效率。