With the success of neural network based modeling in automatic speech recognition (ASR), many studies investigated acoustic modeling and learning of feature extractors directly based on the raw waveform. Recently, one line of research has focused on unsupervised pre-training of feature extractors on audio-only data to improve downstream ASR performance. In this work, we investigate the usefulness of one of these front-end frameworks, namely wav2vec, in a setting without additional untranscribed data for hybrid ASR systems. We compare this framework both to the manually defined standard Gammatone feature set, as well as to features extracted as part of the acoustic model of an ASR system trained supervised. We study the benefits of using the pre-trained feature extractor and explore how to additionally exploit an existing acoustic model trained with different features. Finally, we systematically examine combinations of the described features in order to further advance the performance.


翻译:随着以自动语音识别(ASR)为模型的神经网络的成功,许多研究调查了声学模型和直接以原始波形为基础对地物提取器进行学习。最近,一行研究侧重于对地物提取器进行未经监督的仅掌握音频数据的预培训,以提高下游ASR的性能。在这项工作中,我们调查了这些前端框架之一,即 wav2vec,在没有为混合的ASR系统提供额外未经调试的数据的设置中的有用性。我们将这一框架与人工定义的标准伽马酮特征集以及作为经过监督的ASR系统声学模型的一部分所提取的特征进行比较。我们研究了使用预先培训的地物提取器的好处,并探索了如何进一步利用经过不同特征培训的现有声学模型。最后,我们系统地检查了所述特征的组合,以进一步推进性能。

0
下载
关闭预览

相关内容

语音识别是计算机科学和计算语言学的一个跨学科子领域,它发展了一些方法和技术,使计算机可以将口语识别和翻译成文本。 它也被称为自动语音识别(ASR),计算机语音识别或语音转文本(STT)。它整合了计算机科学,语言学和计算机工程领域的知识和研究。
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
已删除
将门创投
8+阅读 · 2019年1月30日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
26+阅读 · 2020年2月21日
Arxiv
3+阅读 · 2018年6月19日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
已删除
将门创投
8+阅读 · 2019年1月30日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员