Remote sensing of the Earth's surface water is critical in a wide range of environmental studies, from evaluating the societal impacts of seasonal droughts and floods to the large-scale implications of climate change. Consequently, a large literature exists on the classification of water from satellite imagery. Yet, previous methods have been limited by 1) the spatial resolution of public satellite imagery, 2) classification schemes that operate at the pixel level, and 3) the need for multiple spectral bands. We advance the state-of-the-art by 1) using commercial imagery with panchromatic and multispectral resolutions of 30 cm and 1.2 m, respectively, 2) developing multiple fully convolutional neural networks (FCN) that can learn the morphological features of water bodies in addition to their spectral properties, and 3) FCN that can classify water even from panchromatic imagery. This study focuses on rivers in the Arctic, using images from the Quickbird, WorldView, and GeoEye satellites. Because no training data are available at such high resolutions, we construct those manually. First, we use the RGB, and NIR bands of the 8-band multispectral sensors. Those trained models all achieve excellent precision and recall over 90% on validation data, aided by on-the-fly preprocessing of the training data specific to satellite imagery. In a novel approach, we then use results from the multispectral model to generate training data for FCN that only require panchromatic imagery, of which considerably more is available. Despite the smaller feature space, these models still achieve a precision and recall of over 85%. We provide our open-source codes and trained model parameters to the remote sensing community, which paves the way to a wide range of environmental hydrology applications at vastly superior accuracies and 2 orders of magnitude higher spatial resolution than previously possible.
翻译:地球表面水的遥感在广泛的环境研究中至关重要,从评估季节性干旱和洪水的社会影响到气候变化的大规模影响,从评估季节性干旱和洪水的社会影响到气候变化的大规模影响,因此,从卫星图像对水的分类存在大量文献。然而,以往的方法受到以下因素的限制:(1)公共卫星图像的空间分辨率,(2)在像素水平上运作的分类计划,和(3)多光谱波段的需要。我们推进最新技术,1)使用具有全色分辨率和多光谱分辨率分别为30厘米和1.2米的商业图像,2)开发多种全色神经网络(FCN),这些网络除了光谱特性之外,还可以学习水体的形态特征;以及(3)FCN,这些方法可以将水从全色图像进行空间分解,该研究侧重于北极的河流,使用Quickbir、WorldView和GeoEye卫星的图像。由于只有这种高分辨率才能获得培训数据模型,我们首先使用RGB和NIR频谱8频谱多光谱级神经网路段,在光谱多光谱遥感传感器上可以学习,这些经过甚小的模型需要大量地进行数据校正读数据,然后在遥感遥感遥感遥感遥感遥感传感器上进行数据,这些模型,这些模型的精确和精确数据,这些模型需要大量数据,然后通过甚小的精确数据,在遥感遥感遥感遥感遥感遥感遥感遥感遥感遥感学数据,在遥感遥感遥感遥感遥感遥感传感器上进行数据,以便通过遥感遥感遥感遥感遥感遥感遥感遥感遥感遥感遥感遥感遥感遥感遥感遥感遥感遥感遥感遥感遥感遥感遥感遥感遥感遥感遥感遥感学方法,这些数据,这些数据,这些数据,这些数据,从而从我们通过一系列数据,在进行基础数据,在进行基础学前的模型,在进行基础学上,在进行基础数据的校测算。