Cross-domain recommendation (CDR) aims to provide better recommendation results in the target domain with the help of the source domain, which is widely used and explored in real-world systems. However, CDR in the matching (i.e., candidate generation) module struggles with the data sparsity and popularity bias issues in both representation learning and knowledge transfer. In this work, we propose a novel Contrastive Cross-Domain Recommendation (CCDR) framework for CDR in matching. Specifically, we build a huge diversified preference network to capture multiple information reflecting user diverse interests, and design an intra-domain contrastive learning (intra-CL) and three inter-domain contrastive learning (inter-CL) tasks for better representation learning and knowledge transfer. The intra-CL enables more effective and balanced training inside the target domain via a graph augmentation, while the inter-CL builds different types of cross-domain interactions from user, taxonomy, and neighbor aspects. In experiments, CCDR achieves significant improvements on both offline and online evaluations in a real-world system. Currently, we have deployed our CCDR on WeChat Top Stories, affecting plenty of users. The source code is in https://github.com/lqfarmer/CCDR.


翻译:跨部门建议(CDR)的目的是在源域的帮助下,在目标领域提供更好的建议结果,因为源域在现实世界系统中广泛使用和探索,但是,CDR在匹配(候选人生成)模块时,与代表性学习和知识转让中的数据宽度和流行性偏见问题纠缠不休;在这项工作中,我们为CDR在匹配方面提出了一个新型的相互抵触跨域建议(CCDR)框架。具体地说,我们建立了一个巨大的多样化偏好网络,以获取反映用户不同利益的多种信息,并设计了一种内部对比学习(Intra-CL)和三种内部对比学习(inter-CLL)任务,以更好地进行代表性学习和知识转让。CLA内部通过图解放大,在目标领域开展更有效和平衡的培训,而CLV建立用户、分类和邻居的不同类型的跨域互动。在实验中,CCDR在现实世界系统中的离线和在线评价方面都取得了重大改进。目前,我们把CCDR放在What Topribr/ADR in WeCrifal destrucal droduction.

1
下载
关闭预览

相关内容

专知会员服务
90+阅读 · 2021年6月29日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关VIP内容
专知会员服务
90+阅读 · 2021年6月29日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员