Convolutional neural networks and vision transformers have achieved outstanding performance in machine perception, particularly for image classification. Although these image classifiers excel at predicting image-level class labels, they may not discriminate missing or shifted parts within an object. As a result, they may fail to detect corrupted images that involve missing or disarrayed semantic information in the object composition. On the contrary, human perception easily distinguishes such corruptions. To mitigate this gap, we introduce the concept of "image grammar", consisting of "image semantics" and "image syntax", to denote the semantics of parts or patches of an image and the order in which these parts are arranged to create a meaningful object. To learn the image grammar relative to a class of visual objects/scenes, we propose a weakly supervised two-stage approach. In the first stage, we use a deep clustering framework that relies on iterative clustering and feature refinement to produce part-semantic segmentation. In the second stage, we incorporate a recurrent bi-LSTM module to process a sequence of semantic segmentation patches to capture the image syntax. Our framework is trained to reason over patch semantics and detect faulty syntax. We benchmark the performance of several grammar learning models in detecting patch corruptions. Finally, we verify the capabilities of our framework in Celeb and SUNRGBD datasets and demonstrate that it can achieve a grammar validation accuracy of 70 to 90% in a wide variety of semantic and syntactical corruption scenarios.
翻译:暂无翻译