This paper aims to conduct a comprehensive study on facial-sketch synthesis (FSS). However, due to the high costs of obtaining hand-drawn sketch datasets, there lacks a complete benchmark for assessing the development of FSS algorithms over the last decade. We first introduce a high-quality dataset for FSS, named FS2K, which consists of 2,104 image-sketch pairs spanning three types of sketch styles, image backgrounds, lighting conditions, skin colors, and facial attributes. FS2K differs from previous FSS datasets in difficulty, diversity, and scalability and should thus facilitate the progress of FSS research. Second, we present the largest-scale FSS investigation by reviewing 89 classical methods, including 25 handcrafted feature-based facial-sketch synthesis approaches, 29 general translation methods, and 35 image-to-sketch approaches. Besides, we elaborate comprehensive experiments on the existing 19 cutting-edge models. Third, we present a simple baseline for FSS, named FSGAN. With only two straightforward components, i.e., facial-aware masking and style-vector expansion, FSGAN surpasses the performance of all previous state-of-the-art models on the proposed FS2K dataset by a large margin. Finally, we conclude with lessons learned over the past years and point out several unsolved challenges. Our code is available at https://github.com/DengPingFan/FSGAN.
翻译:本文旨在全面研究面部伸缩合成(FSS)问题。然而,由于获得手工绘制的草图数据集的成本高昂,因此缺乏评估过去十年中FSS算法发展的完整基准。我们首先为FSS(称为FS2K)引入了一个高质量的数据集,名为FS2K,由2 104个图像-伸缩配配对组成,包括三种类型的素描风格、图像背景、照明条件、肤色和面部特征。FS2K不同于以前的FSS数据集,这些数据集存在困难、多样性和可缩放性,因此应当促进FSS研究的进展。第二,我们通过审查89种古典方法,包括25种手制作的面部伸缩缩缩缩缩图合成方法、29种一般翻译方法和35种图像-伸缩缩图方法。此外,我们还对现有19种尖端模型进行了全面实验。我们为FSS(名为FSGAN/FSGAN)提出了一个简单的基线。只有两个直接的组成部分,即面部识别面罩和风格式FSSSSSSS2的扩展过程,我们最后几年中的大部分数据都是我们所总结的。