Deep learning has substantially boosted the performance of Monocular Depth Estimation (MDE), a critical component in fully vision-based autonomous driving (AD) systems (e.g., Tesla and Toyota). In this work, we develop an attack against learning-based MDE. In particular, we use an optimization-based method to systematically generate stealthy physical-object-oriented adversarial patches to attack depth estimation. We balance the stealth and effectiveness of our attack with object-oriented adversarial design, sensitive region localization, and natural style camouflage. Using real-world driving scenarios, we evaluate our attack on concurrent MDE models and a representative downstream task for AD (i.e., 3D object detection). Experimental results show that our method can generate stealthy, effective, and robust adversarial patches for different target objects and models and achieves more than 6 meters mean depth estimation error and 93% attack success rate (ASR) in object detection with a patch of 1/9 of the vehicle's rear area. Field tests on three different driving routes with a real vehicle indicate that we cause over 6 meters mean depth estimation error and reduce the object detection rate from 90.70% to 5.16% in continuous video frames.
翻译:深层学习极大地提升了以全视为基础的自主驾驶系统(如Tesla和丰田)中一个关键组成部分的单心深度估计(MDE)的性能。在这项工作中,我们开发了对以学习为基础的MDE的攻击。特别是,我们使用优化法系统生成隐形的、面向物理的、面向物体的对抗性对立补丁,以攻击深度估计。我们把攻击的隐形和有效性与面向目标的对立设计、敏感区域本地化和自然风格伪装相平衡。我们利用现实世界驾驶方案,评估了我们同时对同时使用的MDE模型的攻击和对AD具有代表性的下游任务(即3D对象探测)的情况。实验结果显示,我们的方法可以为不同目标物体和模型产生隐形、有效、强健健健健的对抗性对立补丁,并在物体探测方面达到6米以上的深度估计误差和93%的攻击成功率(ASR)与车辆后方区域1/9的补差。对三条不同的驾驶路线进行的实地测试表明,我们造成6米以上的深度估计误差,并将目标探测率从90.16%降低目标探测率率率率。