A key component of generating text from modern language models (LM) is the selection and tuning of decoding algorithms. These algorithms determine how to generate text from the internal probability distribution generated by the LM. The process of choosing a decoding algorithm and tuning its hyperparameters takes significant time, manual effort, and computation, and it also requires extensive human evaluation. Therefore, the identity and hyperparameters of such decoding algorithms are considered to be extremely valuable to their owners. In this work, we show, for the first time, that an adversary with typical API access to an LM can steal the type and hyperparameters of its decoding algorithms at very low monetary costs. Our attack is effective against popular LMs used in text generation APIs, including GPT-2 and GPT-3. We demonstrate the feasibility of stealing such information with only a few dollars, e.g., $\$0.8$, $\$1$, $\$4$, and $\$40$ for the four versions of GPT-3.
翻译:从现代语言模型中生成文本的一个关键组成部分是选择和调整解码算法。这些算法决定了如何从LM产生的内部概率分布中生成文本。选择解码算法和调整其超参数的过程需要大量的时间、人工努力和计算,也需要大量的人力评估。因此,这种解码算法的身份和超参数被认为对其所有者极为宝贵。在这项工作中,我们第一次表明,拥有典型的解码算法的对手能够以极低的货币成本窃取其解码算法的型号和超参数。我们的攻击对在文本生成API(包括GPT-2和GPT-3)中使用的广受欢迎的LM方法十分有效。我们证明,只有几美元(例如,0.8美元)、1美元、4美元和40美元(GPT-3的四种版本)来窃取这些信息是可行的。</s>