We consider a transfer-learning problem by using the parameter transfer approach, where a suitable parameter of feature mapping is learned through one task and applied to another objective task. Then, we introduce the notion of the local stability and parameter transfer learnability of parametric feature mapping,and thereby derive a learning bound for parameter transfer algorithms. As an application of parameter transfer learning, we discuss the performance of sparse coding in self-taught learning. Although self-taught learning algorithms with plentiful unlabeled data often show excellent empirical performance, their theoretical analysis has not been studied. In this paper, we also provide the first theoretical learning bound for self-taught learning.
翻译:我们通过使用参数传输方法来考虑转移-学习问题,在这种方法中,通过一项任务学习了适当的地貌制图参数,并将其应用于另一项客观任务。然后,我们引入了当地稳定性和参数传输参数特征绘图可学习性的概念,从而得出了参数传输算法的边际学习。作为参数传输学习的一种应用,我们讨论了自学学习中少许编码的性能。虽然自学算法与大量无标签数据往往显示出出色的实证性能,但是没有研究它们的理论分析。在本文中,我们还提供了首个自学理论学习的边际。