For capillary driven flow the interface curvature is essential in the modelling of surface tension via the imposition of the Young-Laplace jump condition. We show that traditional geometric volume of fluid (VoF) methods, that are based on a piecewise linear approximation of the interface, do not lead to an interface curvature which is convergent under mesh refinement in time-dependent problems. Instead, we propose to use a piecewise parabolic approximation of the interface, resulting in a class of piecewise parabolic interface calculation (PPIC) methods. In particular, we introduce the parabolic LVIRA and MoF methods, PLVIRA and PMoF, respectively. We show that a Lagrangian remapping method is sufficiently accurate for the advection of such a parabolic interface. It is numerically demonstrated that the newly proposed PPIC methods result in an increase of reconstruction accuracy by one order, convergence of the interface curvature in time-dependent advection problems and Weber number independent convergence of a droplet translation problem, where the advection method is coupled to a two-phase Navier--Stokes solver.
翻译:对于毛细线性流来说,界面曲线对于通过强制实施Young-Laplace跳跃条件来模拟表面张力至关重要。 我们显示传统的液体(VoF)方法的几何量(基于界面的片度线性近似)不会导致介面曲线,在时间依赖问题的网状改进下会合。 相反,我们提议对界面使用一个片断的抛物线近流,从而产生一组片断式的抛物线界面计算(PPPIC)方法。 特别是,我们分别采用了parblic LVIRA 和 MoF 方法(PLVIRA 和 PMoF ) 。 我们显示, Lagrangian 重新绘制方法对于这种抛物相界面的倾斜十分准确。 我们从数字上证明, 新的 PPPIC 方法导致一个顺序的重建精度提高, 取决于时间的对流压问题的界面曲线趋近, 以及投放式解问题的 Weber 数独立趋同, 其倾式方法与两个阶段的Navier-Stokes 溶解解解器相结合。