Ultrasound (US) imaging is widely used for anatomical structure inspection in clinical diagnosis. The training of new sonographers and deep learning based algorithms for US image analysis usually requires a large amount of data. However, obtaining and labeling large-scale US imaging data are not easy tasks, especially for diseases with low incidence. Realistic US image synthesis can alleviate this problem to a great extent. In this paper, we propose a generative adversarial network (GAN) based image synthesis framework. Our main contributions include: 1) we present the first work that can synthesize realistic B-mode US images with high-resolution and customized texture editing features; 2) to enhance structural details of generated images, we propose to introduce auxiliary sketch guidance into a conditional GAN. We superpose the edge sketch onto the object mask and use the composite mask as the network input; 3) to generate high-resolution US images, we adopt a progressive training strategy to gradually generate high-resolution images from low-resolution images. In addition, a feature loss is proposed to minimize the difference of high-level features between the generated and real images, which further improves the quality of generated images; 4) the proposed US image synthesis method is quite universal and can also be generalized to the US images of other anatomical structures besides the three ones tested in our study (lung, hip joint, and ovary); 5) extensive experiments on three large US image datasets are conducted to validate our method. Ablation studies, customized texture editing, user studies, and segmentation tests demonstrate promising results of our method in synthesizing realistic US images.
翻译:超声( U) 成像被广泛用于临床诊断的解剖结构检查。 美国图像分析所需的新书作者和深学习算法通常需要大量数据。 但是,获取和标注大型美国成像数据并非易事,特别是低发疾病。 现实化的美国图像合成可以在很大程度上缓解这一问题。 在本文中,我们提议了一个基于低解析图像图像的归正对称网络(GAN)合成框架。 我们的主要贡献包括:(1) 我们提出了第一个能够用高解析度和定制文本编辑功能合成现实的B-摩德美国图像的工作;(2) 为加强生成图像的结构细节,我们提议将辅助草图指导引入一个有条件的GAN。 我们把边缘素描加在对象面上,并使用复合面罩作为网络输入;(3) 我们为生成高解析的美国图像,我们采取了一个渐进式培训战略,以从低解析图像中逐渐生成高解析图像。 此外, 我们提出的特征损失是尽可能缩小高的B-modeal图像与真实图像之间的差异,这可以进一步提高美国生成图像的质量。 4,我们提议的缩缩化方法可以用来测试了我们制作图像的缩成像学的缩成像结构, 。