As end-to-end automatic speech recognition (ASR) models reach promising performance, various downstream tasks rely on good confidence estimators for these systems. Recent research has shown that model-based confidence estimators have a significant advantage over using the output softmax probabilities. If the input data to the speech recogniser is from mismatched acoustic and linguistic conditions, the ASR performance and the corresponding confidence estimators may exhibit severe degradation. Since confidence models are often trained on the same in-domain data as the ASR, generalising to out-of-domain (OOD) scenarios is challenging. By keeping the ASR model untouched, this paper proposes two approaches to improve the model-based confidence estimators on OOD data: using pseudo transcriptions and an additional OOD language model. With an ASR model trained on LibriSpeech, experiments show that the proposed methods can significantly improve the confidence metrics on TED-LIUM and Switchboard datasets while preserving in-domain performance. Furthermore, the improved confidence estimators are better calibrated on OOD data and can provide a much more reliable criterion for data selection.


翻译:由于端到端自动语音识别模型(ASR)取得有希望的业绩,各种下游任务都依赖于这些系统的良好信任度量器。最近的研究表明,基于模型的信任度量器比使用输出软负概率大有优势。如果语音识别器的输入数据来自不匹配的声学和语言条件,ASR性能和相应的信心度量器可能会出现严重退化。由于信任度量模型往往在与ASR相同的域内数据上接受培训,一般地适用于外部(OOOD)情景具有挑战性。通过保持对ASR模型保持不动,本文提出了两种方法来改进基于模型的对OOD数据的信任度量测器:使用假抄录和额外的OOOD语言模型。在对LibSpeech进行了培训的ASR模型后,实验表明拟议的方法可以大大提高TED-LIUM和交换板数据集上的信任度量度,同时保持内部性能。此外,改进的信任度测算器对OOD数据进行了更好的校准,可以提供更可靠的数据选择标准。

0
下载
关闭预览

相关内容

专知会员服务
75+阅读 · 2021年9月27日
【KDD2020】 鲁棒的跨语言知识图谱实体对齐
专知会员服务
26+阅读 · 2020年9月10日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2018年11月27日
Arxiv
5+阅读 · 2018年10月4日
Arxiv
3+阅读 · 2018年6月19日
VIP会员
相关VIP内容
专知会员服务
75+阅读 · 2021年9月27日
【KDD2020】 鲁棒的跨语言知识图谱实体对齐
专知会员服务
26+阅读 · 2020年9月10日
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员