In this paper we present a fully-coupled, two-scale homogenization method for dynamic loading in the spirit of FE$^2$ methods. The framework considers the balance of linear momentum including inertia at the microscale to capture possible dynamic effects arising from micro heterogeneities. A finite-strain formulation is adapted to account for geometrical nonlinearities enabling the study of e.g. plasticity or fiber pullout, which may be associated with large deformations. A consistent kinematic scale link is established as displacement constraint on the whole representative volume element. The consistent macroscopic material tangent moduli are derived including micro inertia in closed form. These can easily be calculated with a loop over all microscopic finite elements, only applying existing assembly and solving procedures. Thus, making it suitable for standard finite element program architectures. Numerical examples of a layered periodic material are presented and compared to direct numerical simulations to demonstrate the capability of the proposed framework.
翻译:在本文中,我们展示了一种以FE$$2美元的方法的精神进行动态装载的完全混合的、两尺度的同质化方法。框架考虑了线性动力的平衡,包括微尺度的惯性,以捕捉微异性可能产生的动态效应。对有限层配方进行了调整,以考虑到几何非线性,从而可以进行与大型变形有关的可塑性或纤维拉出等研究。作为对整个代表性体积元素的变异性制约,确定了一个一致的运动规模联系。一致的大型物质正正色模量,包括封闭形式的微惯性。可以很容易地通过对所有微微小的有限元素进行循环来计算,只应用现有的组装和解程序。因此,使它适合于标准的有限元素程序结构。提供了分层定期材料的数值实例,并与直接的数字模拟相比较,以证明拟议框架的能力。