The introduction of pattern languages in the seminal work [Angluin, ``Finding Patterns Common to a Set of Strings'', JCSS 1980] has revived the classical model of inductive inference (learning in the limit, gold-style learning). In [Shinohara, ``Polynomial Time Inference of Pattern Languages and Its Application'', 7th IBM Symposium on Mathematical Foundations of Computer Science 1982] a simple and elegant algorithm has been introduced that, based on membership queries, computes a pattern that is descriptive for a given sample of input strings (and, consequently, can be employed in strategies for inductive inference). In this paper, we give a brief survey of the recent work [Kleest-Mei{\ss}ner et al., ``Discovering Event Queries from Traces: Laying Foundations for Subsequence-Queries with Wildcards and Gap-Size Constraints'', ICDT 2022], where the classical concepts of Angluin-style (descriptive) patterns and the respective Shinohara's algorithm are extended to a query class with applications in complex event recognition -- a modern topic from databases.
翻译:在基本工作[Angluin,“一组字符串的共同点,JCSS 1980年]中引入模式语言,[Angluin,“研究模式”,“一组字符串的共同模式”,JCSS 1980年]恢复了典型的感性推断模式(学习极限,金式学习),在[Shinohara,“模式语言及其应用的多林性时间推断',第七届IBM计算机科学数学基础问题研讨会,第7届IBM 计算机科学数学基础问题研讨会]中引入了一个简单而优雅的算法,该算法根据成员询问,计算出一种模式,用于描述特定输入字符串样本(因此,可用于感化推断战略)的描述性模式。 在本文中,我们简要地研究了最近的工作[Kleest-Meiss}ner et al.,“从线索中解析事件:用红卡和差距制约的后继质调查基础”,ICDT 20222, 其中安格型(描述性)的典型概念是从复杂的应用模式(描述性)扩展到不同的Shinthara 变式数据库。