Scientists are increasingly interested in discovering community structure from modern relational data arising on large-scale social networks. While many methods have been proposed for learning community structure, few account for the fact that these modern networks arise from processes of interactions in the population. We introduce block edge exchangeable models (BEEM) for the study of interaction networks with latent node-level community structure. The block vertex components model (B-VCM) is derived as a canonical example. Several theoretical and practical advantages over traditional vertex-centric approaches are highlighted. In particular, BEEMs allow for sparse degree structure and power-law degree distributions within communities. Our theoretical analysis bounds the misspecification rate of block assignments, while supporting simulations show the properties of the network can be recovered. A computationally tractable Gibbs algorithm is derived. We demonstrate the proposed model using post-comment interaction data from Talklife, a large-scale online peer-to-peer support network, and contrast the learned communities from those using standard algorithms including spectral clustering and degree-correct stochastic block models.
翻译:科学家越来越有兴趣从大规模社会网络产生的现代关系数据中发现社区结构。虽然为学习社区结构提出了许多方法,但很少考虑到这些现代网络产生于人口互动过程的事实。我们引入了块边缘可交换模型(BEEM),用于研究具有潜伏节点水平社区结构的互动网络。块脊椎元件模型(B-VCM)是一个典型的例子。突出了相对于传统的脊椎中心方法的一些理论和实践优势。特别是,BEEMs允许在社区内进行稀有的学位结构和权力法学位分布。我们的理论分析将区块任务分配的偏差率捆绑在一起,同时支持的模拟显示网络的特性可以恢复。可以计算的可移植的地理算法是。我们演示了拟议的模型,使用了来自Talkelife、大型在线对口支持网络的后相互影响数据,并将所学社区与使用的标准算法,包括光谱集和度校正的区块模型进行比较。