Momentum space transformations for incommensurate 2D electronic structure calculations are fundamental for reducing computational cost and for representing the data in a more physically motivating format, as exemplified in the Bistritzer-MacDonald model. However, these transformations can be difficult to implement in more complex systems such as when mechanical relaxation patterns are present. In this work, we aim for two objectives. Firstly, we strive to simplify the understanding and implementation of this transformation by rigorously writing the transformations between the four relevant spaces, which we denote real space, configuration space, momentum space, and reciprocal space. This provides a straight-forward algorithm for writing the complex momentum space model from the original real space model. Secondly, we implement this for twisted bilayer graphene with mechanical relaxation affects included. We also analyze the convergence rates of the approximations, and show the tight-binding coupling range increases for smaller relative twists between layers, demonstrating that the 3-nearest neighbor coupling of the Bistritzer-MacDonald model is insufficient when mechanical relaxation is included for very small angles. We quantify this and verify with numerical simulation.
翻译:用于不相容 2D 电子结构计算的流动空间转换对于降低计算成本和以更物理的动力化格式代表数据至关重要,如Bistritzer-MacDonald模型所示。 但是,这些转换可能难以在更复杂的系统中实施, 如机械放松模式出现时。 在这项工作中,我们的目标是实现两个目标。 首先,我们努力通过严格写写写四个相关空间之间的转换来简化这种转换的理解和实施,我们标明的是真实空间、配置空间、动力空间和对等空间。 这为从原始实际空间模型中写出复杂的动力空间模型提供了直向前的算法。 其次,我们用机械放松影响等来应用这种扭曲的双层平面平面平面平面平面平面平面平面平面平面平面平面平面平面。 我们还分析近似的趋同率,并显示各层之间相对小曲的紧紧凑的组合范围增加, 表明, 当机械调整用于非常小的角度时, Bistritz- MacDonald 模型的三度相邻的组合并不充分。 我们用数字模拟来量化和核查。